viernes, 27 de mayo de 2011

programación orientada a objetos

La programación orientada a objetos o POO (OOP según sus siglas en inglés) es un paradigma de programación que usa objetos y sus interacciones, para diseñar aplicaciones y programas informáticos. Está basado en varias técnicas, incluyendo herencia, abstracción, polimorfismo y encapsulamiento. Su uso se popularizó a principios de la década de los años 1990. En la actualidad, existe variedad de lenguajes de programación que soportan la orientación a objetos.

La programación orientada a objetos, presenta una gran ventaja para el desarrollo de sistemas informáticos, especialmente por su matenimiento y adaptabilidad de los cambios de procesos. Las ventajas superan fuertemente a las desventaja, pero sí, esto no es para principiantes en el desarrollo de sistemas, se requiere bastante estudio en esta metodología y experiencia en otras, con el fin de que uno pueda ir visualizando las diferencias y cuales son las técnicas que debo ir aprendiendo para sacar las ventaja a esta metodología

Origen
Los conceptos de la programación orientada a objetos tienen origen en Simula 67, un lenguaje diseñado para hacer simulaciones, creado por Ole-Johan Dahl y Kristen Nygaard del Centro de Cómputo Noruego en Oslo. En este centro, se trabajaba en simulaciones de naves, que fueron confundidas por la explosión combinatoria de cómo las diversas cualidades de diferentes naves podían afectar unas a las otras. La idea surgió al agrupar los diversos tipos de naves en diversas clases de objetos, siendo responsable cada clase de objetos de definir sus propios datos y comportamientos. Fueron refinados más tarde en Smalltalk, desarrollado en Simula en Xerox PARC (cuya primera versión fue escrita sobre Basic) pero diseñado para ser un sistema completamente dinámico en el cual los objetos se podrían crear y modificar "sobre la marcha" (en tiempo de ejecución) en lugar de tener un sistema basado en programas estáticos.

 

 

 

Conceptos fundamentales

La programación orientada a objetos es una forma de programar que trata de encontrar una solución a estos problemas. Introduce nuevos conceptos, que superan y amplían conceptos antiguos ya conocidos. Entre ellos destacan los siguientes:
 definiciones de las propiedades y comportamiento de un tipo de objeto concreto. La instanciación es la lectura de estas definiciones y la creación de un objeto a partir de ellas.
 (por ejemplo, herencia de la clase C a la clase D) Es la facilidad mediante la cual la clase D hereda en ella cada uno de los atributos y operaciones de C, como si esos atributos y operaciones hubiesen sido definidos por la misma D. Por lo tanto, puede usar los mismos métodos y variables publicas declaradas en C. Los componentes registrados como "privados" (private) también se heredan, pero como no pertenecen a la clase, se mantienen escondidos al programador y sólo pueden ser accedidos a través de otros métodos públicos. Esto es así para mantener hegemónico el ideal de OOP.
entidad provista de un conjunto de propiedades o atributos (datos) y de comportamiento o funcionalidad (métodos) los mismos que consecuentemente reaccionan a eventos. Se corresponde con los objetos reales del mundo que nos rodea, o a objetos internos del sistema (del programa). Es una instancia a una clase.
 Algoritmo asociado a un objeto (o a una clase de objetos), cuya ejecución se desencadena tras la recepción de un "mensaje". Desde el punto de vista del comportamiento, es lo que el objeto puede hacer. Un método puede producir un cambio en las propiedades del objeto, o la generación de un "evento" con un nuevo mensaje para otro objeto del sistema.
  • Evento:
Es un suceso en el sistema (tal como una interacción del usuario con la máquina, o un mensaje enviado por un objeto). El sistema maneja el evento enviando el mensaje adecuado al objeto pertinente. También se puede definir como evento, a la reacción que puede desencadenar un objeto, es decir la acción que genera.
  • Mensaje: una comunicación dirigida a un objeto, que le ordena que ejecute uno de sus métodos con ciertos parámetros asociados al evento que lo generó.
  • Propiedad o atributo:
 contenedor de un tipo de datos asociados a un objeto (o a una clase de objetos), que hace los datos visibles desde fuera del objeto y esto se define como sus características predeterminadas, y cuyo valor puede ser alterado por la ejecución de algún método.
  • Estado interno:
es una variable que se declara privada, que puede ser únicamente accedida y alterada por un método del objeto, y que se utiliza para indicar distintas situaciones posibles para el objeto (o clase de objetos). No es visible al programador que maneja una instancia de la clase.
  • Componentes de un objeto:
atributos, identidad, relaciones y métodos.
  • Identificación de un objeto:
un objeto se representa por medio de una tabla o entidad que esté compuesta por sus atributos y funciones correspondientes.

UN PRIMER EJEMPLO

Si nos detenemos a pensar sobre cómo se nos plantea un problema cualquiera en la
realidad podremos ver que lo que hay en la realidad son entidades (otros nombres que
podríamos usar para describir lo que aquí llamo entidades son “agentes” u “objetos”).
Estas entidades poseen un conjunto de propiedades o atributos, y un conjunto de
métodos mediante los cuales muestran su comportamiento. Y no sólo eso, también
podremos descubrir, a poco que nos fijemos, todo un conjunto de interrelaciones entre
las entidades, guiadas por el intercambio de mensajes; las entidades del problema
responden a estos mensajes mediante la ejecución de ciertas acciones. El siguiente
ejemplo, aunque pueda parecer un poco extraño, creo que aclarará algunos conceptos y
nos servirá como introducción para desarrollarlos con profundidad.

 

 

Características de la POO

Existe un acuerdo acerca de qué características contempla la "orientación a objetos", las características siguientes son las más importantes:


Denota las características esenciales de un objeto, donde se capturan sus comportamientos. Cada objeto en el sistema sirve como modelo de un "agente" abstracto que puede realizar trabajo, informar y cambiar su estado, y "comunicarse" con otros objetos en el sistema sin revelar cómo se implementan estas características. Los procesos, las funciones o los métodos pueden también ser abstraídos y cuando lo están, una variedad de técnicas son requeridas para ampliar una abstracción.El proceso de abstracción permite seleccionar las características relevantes dentro de un conjunto e identificar comportamientos comunes para definir nuevos tipos de entidades en el mundo real. La abstracción es clave en el proceso de análisis y diseño orientado a objetos, ya que mediante ella podemos llegar a armar un conjunto de clases que permitan modelar la realidad o el problema que se quiere atacar.
 Significa reunir a todos los elementos que pueden considerarse pertenecientes a una misma entidad, al mismo nivel de abstracción. Esto permite aumentar la cohesión de los componentes del sistema. Algunos autores confunden este concepto con el principio de ocultación, principalmente porque se suelen emplear conjuntamente.
 Se denomina Modularidad a la propiedad que permite subdividir una aplicación en partes más pequeñas (llamadas módulos), cada una de las cuales debe ser tan independiente como sea posible de la aplicación en sí y de las restantes partes. Estos módulos se pueden compilar por separado, pero tienen conexiones con otros módulos. Al igual que la encapsulación, los lenguajes soportan la Modularidad de diversas formas.
Cada objeto está aislado del exterior, es un módulo natural, y cada tipo de objeto expone una interfaz a otros objetos que especifica cómo pueden interactuar con los objetos de la clase. El aislamiento protege a las propiedades de un objeto contra su modificación por quien no tenga derecho a acceder a ellas, solamente los propios métodos internos del objeto pueden acceder a su estado. Esto asegura que otros objetos no pueden cambiar el estado interno de un objeto de maneras inesperadas, eliminando efectos secundarios e interacciones inesperadas. Algunos lenguajes relajan esto, permitiendo un acceso directo a los datos internos del objeto de una manera controlada y limitando el grado de abstracción. La aplicación entera se reduce a un agregado o rompecabezas de objetos.
Comportamientos diferentes, asociados a objetos distintos, pueden compartir el mismo nombre, al llamarlos por ese nombre se utilizará el comportamiento correspondiente al objeto que se esté usando. O dicho de otro modo, las referencias y las colecciones de objetos pueden contener objetos de diferentes tipos, y la invocación de un comportamiento en una referencia producirá el comportamiento correcto para el tipo real del objeto referenciado. Cuando esto ocurre en "tiempo de ejecución", esta última característica se llama asignación tardía o asignación dinámica. Algunos lenguajes proporcionan medios más estáticos (en "tiempo de compilación") de polimorfismo, tales como las plantillas y la sobrecarga de operadores de C++.




las clases no están aisladas, sino que se relacionan entre sí, formando una jerarquía de clasificación. Los objetos heredan las propiedades y el comportamiento de todas las clases a las que pertenecen. La herencia organiza y facilita el polimorfismo y el encapsulamiento permitiendo a los objetos ser definidos y creados como tipos especializados de objetos preexistentes. Estos pueden compartir (y extender) su comportamiento sin tener que volver a implementarlo. Esto suele hacerse habitualmente agrupando los objetos en clases y estas en árboles o enrejados que reflejan un comportamiento común. Cuando un objeto hereda de más de una clase se dice que hay herencia múltiple.
 la recolección de basura o garbage collector es la técnica por la cual el entorno de objetos se encarga de destruir automáticamente, y por tanto desvincular la memoria asociada, los objetos que hayan quedado sin ninguna referencia a ellos. Esto significa que el programador no debe preocuparse por la asignación o liberación de memoria, ya que el entorno la asignará al crear un nuevo objeto y la liberará cuando nadie lo esté usando. En la mayoría de los lenguajes híbridos que se extendieron para soportar el Paradigma de Programación Orientada a Objetos como C++ u Object Pascal, esta característica no existe y la memoria debe desasignarse manualmente.


 bibliografia:

http://luis.izqui.org/resources/ProgOrientadaObjetos.pdf

Programación estructurada

Programación estructurada

La programación estructurada es una forma de escribir programas de ordenador (programación de computadora) de manera clara. Para ello utiliza únicamente tres estructuras: secuencia, selección e iteración; siendo innecesario el uso de la instrucción o instrucciones de transferencia incondicional (GOTO, EXIT FUNCTION, EXIT SUB o múltiples RETURN).
Hoy en día las aplicaciones informáticas son mucho más ambiciosas que las necesidades de programación existentes en los años 1960, principalmente debido a las aplicaciones gráficas, por lo que las técnicas de programación estructurada no son suficientes. Ello ha llevado al desarrollo de nuevas técnicas, tales como la programación orientada a objetos y el desarrollo de entornos de programación que facilitan la programación de grandes aplicaciones.

Orígenes de la programación estructurada

A finales de los años 1960 surgió una nueva forma de programar que no solamente daba lugar a programas fiables y eficientes, sino que además estaban escritos de manera que facilitaba su comprensión posterior.
El teorema del programa estructurado, demostrado por Böhm-Jacopini, demuestra que todo programa puede escribirse utilizando únicamente las tres instrucciones de control siguientes:
  • Secuencia
  • Instrucción condicional.
  • Iteración (bucle de instrucciones) con condición al principio.
Solamente con estas tres estructuras se pueden escribir todos los programas y aplicaciones posibles. Si bien los lenguajes de programación tienen un mayor repertorio de estructuras de control, éstas pueden ser construidas mediante las tres básicas.

 Estructura secuencial

Una estructura de programa es secuencial si se ejecutan una tras otra a modo de secuencia, es decir que una instrucción no se ejecuta hasta que finaliza la anterior.

Estructura selectiva o de selección

La estructura selectiva permite que la ejecución del programa se bifurque a una instrucción u otra según un criterio o condición lógica, solo una de estas instrucciones se ejecutará.

Estructura iterativa

Un bucle iterativo o iteración de una secuencia de instrucciones, hace que se repitan mientras se cumpla una condición, en un principio el número de iteraciones no tiene porque estar determinado.

Anidamiento

El cuerpo de cualquier estructura puede ser una instrucción simple u otra estructura, que a su vez puede anidar a otra.

 Ventajas de la programación estructurada

1. Los programas son más fáciles de entender, ya que pueden ser leídos de forma secuencial, sin necesidad de hacer seguimiento a saltos de línea (GOTO) dentro de los bloques de código para entender la lógica.
2. La estructura del programa es clara, puesto que las instrucciones están más ligadas o relacionadas entre sí.
3. Reducción del esfuerzo en las pruebas. El seguimiento de los fallos o errores del programa ("debugging") se facilita debido a la estructura más visible, por lo que los errores se pueden detectar y corregir más fácilmente.
4. Reducción de los costos de mantenimiento de los programas.
5. Programas más sencillos y más rápidos (ya que es más fácil su optimización).
6. Los bloques de código son auto explicativos, lo que facilita la documentación.
7. Los GOTO se reservan para construir las instrucciones básicas. Aunque no se usan de forma directa, por estar prohibida su utilización, están incluidas implícitamente en las instrucciones de selección e iteración.
8. Un programa escrito de acuerdo a estos principios no solamente tendrá una mejor estructura sino también una excelente presentación.
La programación estructurada ofrece estos beneficios, pero no se la debe considerar como una panacea ya que el desarrollo de programas es, principalmente, una tarea de dedicación, esfuerzo y creatividad.

Inconvenientes de la programación estructurada

El principal inconveniente de este método de programación es que se obtiene un único bloque de programa, que cuando se hace demasiado grande puede resultar problemático su manejo; esto se resuelve empleando la programación modular, definiendo módulos interdependientes programados y compilados por separado (en realidad esto no es necesario, pero es recomendable para su mantenimiento y funcionalidad).
En realidad, cuando se programa hoy en día (inicios del siglo XXI) se suelen utilizar, tanto las técnicas de programación estructurada como las de programación modular, de forma conjunta y por lo tanto es posible que cuando uno haga referencia a la programación estructurada esté considerando también las técnicas de modularización.
Un método un poco más sofisticado es la programación por capas, en la que los módulos tienen una estructura jerárquica en la que se pueden definir funciones dentro de funciones o de procedimientos.
Bibliografía:
http://es.wikipedia.org/wiki/Programaci%C3%B3n_estructurada

programación dirigida por eventos

programación dirigida por eventos:
La programación dirigida por eventos es un paradigma de programación en el que tanto la estructura como la ejecución de los programas van determinados por los sucesos que ocurran en el sistema, definidos por el usuario o que ellos mismos provoquen.
Para entender la programación dirigida por eventos, podemos oponerla a lo que no es: mientras en la programación secuencial (o estructurada) es el programador el que define cuál va a ser el flujo del programa, en la programación dirigida por eventos será el propio usuario —o lo que sea que esté accionando el programa— el que dirija el flujo del programa. Aunque en la programación secuencial puede haber intervención de un agente externo al programa, estas intervenciones ocurrirán cuando el programador lo haya determinado, y no en cualquier momento como puede ser en el caso de la programación dirigida por eventos.
El creador de un programa dirigido por eventos debe definir los eventos que manejarán su programa y las acciones que se realizarán al producirse cada uno de ellos, lo que se conoce como el administrador de evento. Los eventos soportados estarán determinados por el lenguaje de programación utilizado, por el sistema operativo e incluso por eventos creados por el mismo programador.

En la programación dirigida por eventos, al comenzar la ejecución del programa se llevarán a cabo las inicializaciones y demás código inicial y a continuación el programa quedará bloqueado hasta que se produzca algún evento. Cuando alguno de los eventos esperados por el programa tenga lugar, el programa pasará a ejecutar el código del correspondiente administrador de evento. Por ejemplo, si el evento consiste en que el usuario ha hecho click en el botón de play de un reproductor de películas, se ejecutará el código del administrador de evento, que será el que haga que la película se muestre por pantalla.

Un ejemplo claro lo tenemos en los sistemas de programación Lexico y Visual Basic, en los que a cada elemento del programa (objetos, controles, etcétera) se le asignan una serie de eventos que generará dicho elemento, como la pulsación de un botón del ratón sobre él o el redibujado del control.

La programación dirigida por eventos es la base de lo que llamamos interfaz de usuario, aunque puede emplearse para desarrollar interfaces entre componentes de Software como módulos del núcleo también.
En los primeros tiempos de la computación, los programas eran secuenciales, también llamados Batch. Un programa secuencial arranca, lee parámetros de entrada, procesa estos parámetros, y produce un resultado, todo de manera lineal y sin intervención del usuario mientras se ejecuta.
Con la aparición y popularización de los pc, el software empezó a ser demandado para usos alejados de los clásicos académicos y empresariales para los cuales era necesitado hasta entonces, y quedó patente que el paradigma clásico de programación no podía responder a las nuevas necesidades de interacción con el usuario que surgieron a raíz de este hecho...




Propiedades.
Una propiedad es una asignación que describe algo sobre un objeto como un formulario. Dependiendo de la propiedad, se la puede asignar en tiempo de diseño usando la ventana Propiedades y/o en tiempo de ejecución al programar.
A continuación se describen dos ejemplos de las propiedades del formulario de Visual Basic:
  • MinButton. Esta propiedad puede asignarse como TRUE (verdadero) o FALSE (falso). Dependiendo de la asignación, el formulario tendrá o no tendrá un botón minimizar.
  • BackColor. Asignando esta propiedad a un valor expresado como hexadecimal RGB (Rojo Verde Azul) o como una constante se cambia el color del fondo del formulario. Se pueden consultar las constantes usando el examinador de objetos (Seleccione VER, EXAMINADOR DE OBJETOS) y en la Biblioteca VBRUN (Columna clase) bajo "ColorConstants" y "SystemColorConstants".
Métodos.
Los métodos son funciones que también son llamadas desde programa, pero a diferencia de los procedimientos no son programadas por el usuario, sino que vienen ya pre-programadas con el lenguaje. Los métodos realizan tareas típicas, previsibles y comunes para todas las aplicaciones. de ahí que vengan con el lenguaje y que se libere al usuario de la tarea de programarlos. Cada tipo de objeto o de control tiene sus propios métodos.
En general solo pueden ser ejecutados en tiempos de ejecución no en tiempo de diseño. Algunos ejemplos de métodos de formularios son el método MOVE, que mueve un formulario en un espacio de dos dimensiones en la pantalla, y el método ZORDER que sitúa el formulario delante o detrás de otras ventanas.
Los métodos son invocados dando nombres al objeto y cuyo método se está llamando, listando el operador punto (.), y después listando el nombre del método. Como cualquier rutina los métodos pueden incorporar argumentos

Por ejemplo:

Form1.Show 1

Este método Show carga y muestra un formulario, dos acciones distintas que forman ambas partes del proceso de nacimiento o inicio a un formulario (al ejecutar el formulario de inicio se carga también primero el formulario y después se muestra). El método Show puede ser invocado como no modal o modal. Modal significa que no se ejecuta ningún código posterior hasta que el formulario se oculte o se descargue. Cuando se muestra un formulario modal no se puede producir ninguna entrada de usuario (de teclado o click del ratón) excepto para los objetos del formulario modal. Si se activa el estilo 1 (uno) es modal y 0 (cero) es no modal.
 
Visual Significa Visual.

Como el nombre lo indica, una gran parte de la programación con Visual Basic se realiza visualmente. Esto significa que durante el tiempo de diseño usted tiene la capacidad de ver la forma en el programa se vera al ejecutarse Esta es una gran ventaja sobre otros lenguajes de programación debido a que se tiene la capacidad de cambiar y experimentas con el diseño hasta que se esté satisfecho con los colores, proporciones e imágenes que incluya en su programa.

bibliografia: